Preview

Geographical Environment and Living Systems

Advanced search

Application of bacterial cold shock proteins in biotechnology

https://doi.org/ 10.18384/2310-7189-2018-1-86-94

Abstract

Most of the achievements of modern biotechnology are related to microorganisms, which is explained by their diversity, the relative simplicity of their study and cultivation. This review is dedicated to the application of bacterial cold shock proteins in biotechnology. These proteins bind DNA and RNA and melt secondary structures formed in nucleic acids, which is important in bacteria adaptation to different kinds of stresses. Genes coding bacterial cold chock proteins are used for transformation of bacteria and higher plants, which lead to an increase in stress tolerance. Also, purified recombimnant bacterial cold shock proteins are used to increase efficiency of different molecular biology reactions in vitro. In this review, the approaches applied in relevant studies are described in detail and their results are summarized.

About the Authors

Nikolai E. Zlobin
All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Russia
Russian Federation


Vasiliy V. Taranov
All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Russia
Russian Federation


References

1. Вавилов П.П., Гриценко В.В., Кузнецов В.С. Растениеводство / 5-е изд. М.: Агропромиздат. 1986. 512 с.

2. Brandi A., Pon C.L., Gualerzi C.O. Interaction of the main cold shock protein CS7. 4 (CspA) of Escherichia coli with the promoter region of hns // Biochimie. 1994. Vol. 76. no 10-11. Pp. 1090-1098.

3. Castiglioni P. et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions // Plant physiology. 2008. Vol. 147. no. 2. Pp. 446-455.

4. Cristofari G., Darlix J.L. The ubiquitous nature of RNA chaperone proteins // Progress in nucleic acid research and molecular biology. 2002. Vol. 72. Pp. 223-268.

5. Derzelle S. et al. Improved adaptation to cold-shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock proteins // Applied and environmental microbiology. 2003. Vol. 69. no 7. Pp. 4285-4290.

6. Ermolenko D.N., Makhatadze G.I. Bacterial cold-shock proteins // Cellular and molecular life sciences. 2002. Vol. 59. no 11. Pp. 1902-1913.

7. Goldstein J., Pollitt N.S., Inouye M. Major cold shock protein of Escherichia coli // Proceedings of the National Academy of Sciences. 1990. Vol. 87. no 1. Pp. 283-287.

8. Golovlev E.L. Bacterial cold shock response at the level of DNA transcription, translation, and chromosome dynamics // Microbiology. 2003. Vol. 72. no 1. Pp. 1-7.

9. Gualerzi C.O., Giuliodori A.M., Pon C.L. Transcriptional and post-transcriptional control of cold-shock genes // Journal of molecular biology. 2003. Vol. 331. no 3. Pp. 527-539.

10. Koziel M.G., Carozzi N.B., Desai N. Optimizing expression of transgenes with an emphasis on post-transcriptional events // Plant molecular biology. 1996. Vol. 32. no 1. Pp. 393-405.

11. Lessard P.A. et al. Manipulating gene expression for the metabolic engineering of plants // Metabolic Engineering. 2002. Vol. 4. no 1. Pp. 67-79.

12. Max K.E.A. et al. T-rich DNA single strands bind to a preformed site on the bacterial cold shock protein Bs-CspB // Journal of molecular biology. 2006. Vol. 360. no 3. Pp. 702-714.

13. Mihailovich M. et al. Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression // Bioessays. 2010. Vol. 32. no 2. Pp. 109-118.

14. Newkirk K. et al. Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA // Proceedings of the National Academy of Sciences. 1994. Vol. 91. no 11. Pp. 5114-5118.

15. Panoff J.M. et al. Cold stress responses in mesophilic bacteria // Cryobiology. 1998. Vol. 36. no 2. Pp. 75-83.

16. Phadtare S. et al. Applications of nucleic acid chaperone activity of CspA and its homologues // Journal of molecular microbiology and biotechnology. 2009. Vol. 17. no 3. Pp. 110-117.

17. Phadtare S., Inouye M., Severinov K. The mechanism of nucleic acid melting by a CspA family protein // Journal of molecular biology. 2004. Vol. 337. no 1. Pp. 147-155.

18. Phadtare S., Inouye M. The Cold Shock Response // EcoSal Plus. 2008. Vol. 3. Iss. 1. doi:10.1128/ecosalplus.5.4.2

19. Phadtare S., Severinov K. RNA remodeling and gene regulation by cold shock proteins // RNA biology. 2010. Vol. 7. no 6. Pp. 788-795.

20. Qing G. et al. Cold-shock induced high-yield protein production in Escherichia coli // Nature biotechnology. 2004. Vol. 22. no 7. Pp. 877-882.

21. Schindelin H., Marahiel M.A., Heinemann U. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein // Nature. 1993. Vol. 364. no 6433. Pp. 164.

22. Sasaki K., Imai R. Pleiotropic roles of cold shock domain proteins in plants // Frontiers in plant science. 2012. Vol. 2. Pp. 116.

23. Shaw M.K., Marr A.G., Ingraham J.L. Determination of the minimal temperature for growth of Escherichia coli // Journal of Bacteriology. 1971. Vol. 105. no 2. Pp. 683-684.

24. Vasina J.A., Baneyx F. Recombinant protein expression at low temperatures under the transcriptional control of the major Escherichia coli cold shock promoter cspA // Applied and environmental microbiology. 1996. Vol. 62. no 4. Pp. 1444-1447.

25. Xia B., Ke H., Inouye M. Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli // Molecular microbiology. 2001. Vol. 40. no 1. Pp. 179-188.

26. Yu T.F. et al. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA // Scientific Reports. 2017. Vol. 7. doi:10.1038/srep44050


Review

Views: 116


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7613 (Print)
ISSN 2712-7621 (Online)