Structure and Dynamics of Cenopopulations of Siberian Juniper (Juniperus Sibirica Burgsd) at the Upper Limit of its Growth in the Western Part of the Putorana Plateau
https://doi.org/10.18384/2712-7621-2024-2-67-82
Abstract
Aim. Assessment of the modern distribution, morphological and age structure of Siberian juniper (Juniperus sibibrica Burgsd.) thickets within in the western part of the Putorana plateau (Syukhie gory massif).
Methodology. Using the method of studying the morphological structure of woody vegetation growing at different altitudes above sea level and classical methods of dendrochronology, the age and morphological structure of 597 individuals of Siberian juniper growing at the upper limit of woody vegetation were studied. Dendrochronological samples within the upper forest boundary were selected at different absolute altitudes (from 358 to 650 m ASL) and under different exposure conditions.
Results. It is shown that, since the end of the 19th century, one of the most widespread and long-lived shrub species in the study area – Siberian juniper – has been spreading intensively under the canopy of emerging Gmelin larch (Larix gmelinii (Rupr.) Kuzen) stands. The type and rate of shrub colonisation varies according to slope exposure, tree stand density and altitude. It was found that in the study area Siberian juniper is distributed only in the zone from the upper limit of the distribution of the border of closed forests (358–515 m ASL) to the upper limit of the distribution of individual trees in the tundra (604–650 m ASL). In the studied massif of the Sukhye Mountains, Siberian juniper is distributed only on the slopes of the southern, western and eastern exposures. The observed upslope expansion of Siberian juniper is explained by changes in climatic conditions in the study area.
Research implications. The results of the study can be used to create models of climate-induced transformation of high mountain ecosystems in the Subarctic.
Keywords
About the Authors
S. O. VyukhinRussian Federation
Sergey O. Vyukhin – Junior Researcher, Laboratory of Geographic Information Technologies
ul. 8 Мarta 202, Yekaterinburg 620144
A. A. Grigoriev
Russian Federation
Grigoriev Andrey Andreevich – PhD (Agriculture), Senior Researcher, Laboratory of Geographic Information Technologies
ul. 8 Мarta 202, Yekaterinburg 620144
D. S. Balakin
Russian Federation
Dmitry S. Balakin – Junior Researcher, Laboratory of Geographic Information Technologies
ul. 8 Мarta 202, Yekaterinburg 620144
A. S. Timofeev
Russian Federation
Artem S. Timofeev – engineer of the 1st category, Laboratory of geographic information technologies
ul. 8 Мarta 202, Yekaterinburg 620144
References
1. Vysotskaya A. A., Medvedkov A. A. [Information resources for assessing the ecological potential of geosystems (on the example of the Yenisei North territory)]. In: InterCarto. InterGIS [InterCarto. InterGIS], 2023, vol. 29, no. 1, pp. 20–33. DOI: 10.35595/2414-9179-2023-1-29-20-33
2. Vysotskaya A. A., Medvedkov A. A. [Climatogenic "greening" of kurum landscapes in the valley of the lower reaches of the Podkamennaya Tunguska River]. In: InterCarto. InterGIS [InterCarto. InterGIS], 2022, vol. 28, no. 1, pp. 305–313. DOI: 10.35595/2414-9179-2022-1-28-305-313
3. Gorchakovsky P. L., Shiyatov S. G. Fitoindikatsiya usloviy okruzhayushchey sredy i razvitiya protsessov v usloviyakh krizisa [Phytoindication of environmental conditions and natural processes in the highlands]. Moscow: Nauka, 1985. 208 p.
4. Deeva N. M. Subalpine juniper groups. In: Norin V. N. Gornyye fitotsenologicheskiye sistemy Subarktiki [Mountain phytocenological systems of the Subarctic]. Leningrad, Nauka Publ., 1986, pp. 251–253.
5. Im S. T., Kharuk V. I. [Climatically induced changes in the ecotone of the alpine forest-tundra of the Putorana Plateau]. In: Issledovaniye Zemli iz kosmosa [Exploration of the Earth from Space], 2013, no. 5, pp. 32. DOI: 10.7868/S0205961413040052
6. Karpenko L. V. [Soils of the Putorana Plateau in the Vicinity of Lake Lama]. In: Vestnik KrasGAU [Bulletin of KrasSAU], 2015, no. 8, pp. 58–66.
7. Kuvaev V. B. Vysotnoye raznoobraziye rasteniy v gorakh Putorana [Altitudinal Distribution of Plants in the Putorana Mountains]. Leningrad, Nauka Publ., 1980. 264 p.
8. Malyshev L. I. [Floristic Studies on the Putorana Plateau]. In: Malyshev L. I., ed. Flora Putorana: materialy k poznaniyu sostava i genezisa gornykh subarkticheskikh flor Sibiri [Flora of Putorana: Materials for Understanding the Peculiarities of the Composition and Genesis of Mountain Subarctic Floras of Siberia]. Novosibirsk, Nauka Publ., 1976, pp. 4–10.
9. Medvedkov A. A. [How Does Global Warming Change the Nature of the Siberian Taiga?]. In: Priroda [Nature], 2016, no. 12, pp. 40–47.
10. Norin B. N. Gornyye fitotsenologicheskiye sistemy Subarktiki [Mountain Phytocenological Systems of the Subarctic]. Leningrad, Nauka Publ., 1986. 292 p.
11. Ponomareva T. V. [Content and distribution of sulfur in permafrost-taiga soils of the Putorana Plateau]. In: Khvoynyye borealnyye zony [Coniferous boreal zones], 2008, no. 3-4, pp. 290–294.
12. Galyzin G. I., ed. Putoranskaya ozernaya provintsiya [Putorana lake province]. Novosibirsk, Nauka Publ., 1975. 200 p.
13. Khantemirov R. M., Gorlanova L. A., Shiyatov S. G. [Pathological structures in annual rings of Siberian juniper (Juniperus sibirica Burgsd.) and their use for reconstruction of extreme climatic events]. In: Ekologiya [Ecology], 2000, no. 3, pp. 185–192.
14. Shiyatov S. G. Dinamika drevesnoy i kustarnikovoy rastitel'nosti v gorakh Polyarnogo Urala pod vliyaniyem sovremennykh izmeneniy klimata [Dynamics of tree and shrub vegetation in the mountains of the Polar Urals under the influence of modern climate changes]. Ekaterinburg, UrO RAN Publ., 2009. 216 p.
15. Grigoriev A. A., Shalaumova Y. V., Balakin D. S., Erokhina O. V. Alpine Shrubification: Juniper Encroachment into Tundra in the Ural Mountains. In: Forests, 2022, vol. 13. DOI: 10.3390/f13122106
16. Harsch M. A., Hulme P. E., McGlone M. S., Duncan R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. In: Ecology Letters, 2009, vol. 13, pp. 1040–1049.
17. Gottfried M., Pauli H., Futschik A., Akhalkatsi M. Continent-wide response of mountain vegetation to climate change. In: Nature Climate Change, 2012, vol. 2, pp. 111–115.
18. Forbes B. C., Fauria M. M. Zetterberg, P. Russian Arctic warming and “greening” are closely tracked by tundra shrub willows. In: Global Change Biology, 2010, vol. 16, pp. 1542–1554.
19. Abaimov A. P., Zyryanova O. A., Prokushkin S. G., Koike T., Matsuura Y. Forest ecosystems of the cryolithic zone of Siberia: regional features. mechanisms of stability and pyrogenic changes. In: Eurasian Journal of Forest Research, 2000, no. 1, pp. 1–10.
20. Wang Z., Yang B., Deslauriers A., Bräuning A. Intra-annual stem radial increment response of Qilian juniper to temperature and precipitation along an altitudinal gradient in northwestern China. In: Trees, 2014, no. 29, pp. 25–34. 21. Myers-Smith I. H., Hik D. S. Climate warming as a driver of tundra shrubline advance. In: Journal of Ecology, 2018, vol. 106, pp. 547–560.
21. Tinner W., Kaltenrieder P. Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. In: Journal of Ecology, 2005, vol. 93, pp. 936–947.
22. Grigoriev A. A., Shalaumova Y. V., Vyukhin S. O., Balakin D. S. Upward Treeline Shifts in Two Regions of Subarctic Russia Are Governed by Summer Thermal and Winter Snow Conditions. In: Forests, 2022, vol. 13, pp. 174. DOI: 10.3390/f13020174