Preview

Geographical Environment and Living Systems

Advanced search

INVOLVMENT OF HIGH MOLECULAR WEIGHT Cd -BINDING PROTEINS IN Cd-ACCUMULATION IN THE SCALLOP MIZUHOPECTEN YESSOENSIS

Abstract

Mollusks have long been known to naturally
accumulate metals to high concentrations, particularly
in the digestive gland. Among them scallops have able
to accumulate toxic Cd to concentrations far exceeding
those in the surrounding seawater. We have studied the
cadmium-binding ligands in the digestive gland of M.
yessoensis
The results have revealed two high molecular
weight proteins with a 72 and 43 kDa in M. yessoensis
with specifi c spectroscopic relation (ƒ 254/ ƒ 280 нм >
2) and 10 SH-groups for both proteins. The results of the
study of cadmium accumulation in the digestive gland
of the scallop and the distribution of cadmium among
cytoplasmic proteins in the M. yessoensis from locations
with varying degrees of anthropogenic impact showed a
well-developed mechanism of adaptation in M. yessoensis
to highly toxic cadmium.

About the Authors

Авианна Жуковская
Тихоокеанский Океанологический Институт им. В. И. Ильичева Дальневосточного отделения РАН (Владивосток)
Russian Federation


Нина Бельчева
Тихоокеанский Океанологический Институт им. В. И. Ильичева Дальневосточного отделения РАН (Владивосток)
Russian Federation


Виктор Челомин
Тихоокеанский Океанологический Институт им. В. И. Ильичева Дальневосточного отделения РАН (Владивосток)
Russian Federation


References

1. Никаноров А.М., Жулидов А.В., Покаржевский А.Д. Биомониторинг тяжелых металлов в пре- сных экосистемах. Л.: Гидрометеоиздат, 1985.

2. Челомин В.П. Экотоксикологические аспекты биоаккумуляции кадмия (на примере морских двустворчатых моллюсков). Автореф. дис.  док. биол. наук. Владивосток: ТОЙ ДВО РАН. 1998.

3. Bebiano M., Serafi m M. and Rita M. Involvement of metallothionein in cadmium accumulation and elimination in the clam Ruditapes decussata // Bull. Environ. Contam. Toxicol. 1994. V. 53.

4. Bustamante P., Miramand P. Interspecifi c and geographical variations of trace element concentrations in Pectinidae from European waters // Chemosphere. 2004. V. 57.

5. Dallinger R., Berger B., Gruber C., Stьrzenbaum S. Metallothioneins in Terrestrial Invertebrates: Structural Aspects, Biological Signifi cance, and Implications for their Use as Biomarkers // Cell. Mol. Biology. 2000. V. 46(2).

6. Dallinger R., Berger B., Hunziker P.E., Birchler N., Hauer C.R. and Jeremias H.R. Kagi. Purifi cation and primary structure of snail metallothionein. Similarity of the N-terminal sequence with histones H4 and H2A // Eur. J. Biochem. 1993. V. 216.

7. Giguere A., Coulliard Y., Campbell P. G.C., et al. Steady-state distribution of metals among metallothionein and other cytosolic ligands and links to cytotoxicity in bivalves living along a polymetallic gradient // Aquatic Toxicology. 2003. V. 64.

8. Hamer D.H. Metallothionein // Ann. Rev. Biochem. 1986. V. 55.

9. Jin-Sung Park, Soohee Chung, Il-Seon Park, Yangsun Kim, Chul -Hwan Koh, In-Sook Lee. Purifi cation and characterization of metallothionein-like cadmium-binding protein from Asian perwinkle Littorina brevicula // Comparative Biochemistry and Physiology Part C. 2002. V. 131.

10. Julshamn K., Andersen K.-J. Subcellular distribution of major and minor elements in unexposed mollusks in western Norway-I. Th e distribution and binding of cadmium, zinc and copper in the liver and the digestive system of the oyster Ostrea edulis // Comp. Biochem. Physiol. 1983. V. 75A.

11. Kagi J.H.R., Kojima Y. Chemistry and biochemistry of metallothionein. Metallothionein II. Eds. by Kagi J.H.R., Kojima Y., Basel: Birkhauser Verlag. 1987.

12. Laemly U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. // Nature. 1970. № 5259.

13. Lowry O. H., Rosebrough N. J., Farr, A. L., Randall R. J. Protein measurement with the Folin phenol reagent // Journal of Biological Chemistry. 1951. V. 193.

14. Metian Marc, Warnau Michel, Bustamante Paco, et. al. Interspecifi c comparisons of Cd bioaccumulation in European Pectinidae (Chlamys varia and Pecten maximus) // Journal of Experimental Marine Biology and Ecology. 2007. V. 353.

15. Nolan C.V., Duke E.J. Cadmium accumulation and toxicity in Mytilus edulis: involvement of metallothioneins and heavy-molecular weight protein // Aquat. Toxicol. 1983. V. 4.

16. Petering D.H., Fowler B.A. Discussion summary. Role of metallothionein and related proteins in metal metabolism and toxicity: problems and perspectives // Environ. Health Perspect. 1986. V. 65.

17. Ponzano E., Dondero E., Bouquegneau J.-M., Sack R., Hunziker P., Viarengo A. Purifi cation and biochemical characterization of cadmium metallothionein from the digestive gland of the Antarctic scallop Adamussium colbecki (Smith, 1902) // Polar Biology. 2001. V. 24.

18. Roesijadi G. Metallothioneins in metal regulation and toxicity in aquatic animals (Review) // Aquat. Toxicol. 1992. V. 22.

19. Roesijadi G., Fowler B. A. Purifi cation of invertebrate metallothioneins // Methods in Enzymology. - 1991. V. 205.

20. Stone H.C., Wilson S.B., Overnell J. Cd-binding proteins in the scallop Pecten maximus // Environ. Health Perspect. 1986. V. 65.

21. Viarengo A., Canesi L., Massu-Cotelli A., Ponzano E., Orunesu M. Cu, Zn, Cd content in diff erent tissues of the Antarctic scallop Adamussium colbecki (Smith 1902): role of metallothionein in the homeostasis and in the detoxifi cation of heavy metals // Mar. Env. Res. - 1993. - V. 35. - P. 216-217.


Review

Views: 83


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7613 (Print)
ISSN 2712-7621 (Online)