Preview

Geographical Environment and Living Systems

Advanced search

INFLUENCE OF COPPER OXIDE (II) NANOPARTICLES AND CU ION ON CHOLINESTERASE ACTIVITY OF HEMOLIMPH MUSSELS CRENOMYTILUS GRAYANUS (DUNKER, 1853) (BIVALVIA: MYTILIDAE) IN THE CONDITIONS OF A LABORATORY EXPERIMENT

https://doi.org/ 10.18384/2310-7189-2017-3-14-26

Abstract

The influence of the content of copper oxide nanoparticles (NP CuO) and Cu2+ ions in the medium on their accumulation in the hemolymph of the mussel Crenomytilus grayanus is studied. The effect of copper oxide nanoparticles and metal ion (Cu2+) on cholinesterase activity in hemolymph of mussels is estimated. Multidirectional effects of CuO and Cu2 + nanoparticles on the copper content and cholinesterase activity in hemolymph are demonstrated. At the initial stage of the experiment, cholinesterase activity is shown to decrease in the case of the ionic form of copper, and in the case of copper nanoparticles, the activity increases. At the final stage of the experiment, an opposite situation for the considered forms of copper is observed.

About the Authors

Nikolaj N. Kovalev
Far Eastern State Technical Fisheries University
Russian Federation


Eugene V. Mikheev
Far Eastern State Technical Fisheries University
Russian Federation


Victor Kavun
National Scientific Centre of Marine Biology, Far East Branch, Russian Academy of Sciences
Russian Federation


References

1. Кавун В.Я., Шулькин В.М. Изменение микроэлементного состава органов и тканей двустворчатого моллюска Crenomytilus grayanus при акклиматизации в биотопе, хронически загрязненном тяжелыми металлами // Биология моря. 2005. Т. 31. № 2. С. 123-128.

2. Ковалев Н.Н. Адаптивная роль холинэстеразы гемолимфы двустворчатых моллюсков // Известия ТИНРО. 2003. Т. 133. С. 97-103.

3. Ковалев Н.Н., Кавун В.Я., Костецкий Э.Я., Михеев Е.В., Подгурская О.В. Холинэстеразная активность гемолимфы мидии Crenomytilus grayanus (Dunker, 1853) (Bivalvia: Mytilidae), обитающей в импактных природных и антропогенных условиях // Биология. моря. 2016. Т. 42. № 1. С. 41-47.

4. Подгурская О.В., Кавун В.Я. Оценка адаптационно-защитного потенциала двустворчатых моллюсков Modiolus modiolus (Linnaeus, 1758) и Crenomytilus grayanus (Dunker, 1853) в условиях повышенного содержания тяжелых металлов в среде // Биология. моря. 2012. Т. 38. № 2. С. 174-182.

5. Фадеева Ю.И., Слободскова В.В., Кавун В.Я., Челомин В.П. Влияние наночастиц оксида меди (II) и иона Cu на образование продуктов перекисного окисления липидов в жабрах мидии Грея Crenomytilus grayanus (Dunker, 1853) (Bivalvia: Mytilidae) в условиях лабораторного эксперимента // Вестник Московского государственного областного университета. Серия: Естественные науки. 2016. № 3. С. 74-83.

6. Фадеева Ю.И., Кавун В.Я., Слободскова В.В., Челомин В.П. Влияние оксида меди (II) и иона Cu на изменение микроэлементного состава органов мидии Грея Crenomytilus grayanus (Dunker, 1853) (Bivalvia: Mytilidae) в условиях лабораторного и натурного экспериментов // Вестник Московского государственного областного университета.Серия: Естественные науки. 2016. № 3. С. 84-97.

7. Amelia M., Lincheneau C., Silvi S., Credi A. Electrochemical properties of CdSe and CdTe quantum dots // Chem. Soc. Rev. 2012.Vol. 41, no 17. P. 5728-5743.

8. Belcheva N.N., Zakhartsev M.V., Dovzhenko N.V., Zhukovskaya A.F., Kavun V.Ya., Chelomin V.P. Anthropogenic pollution stimulates oxidative stress in soft tissues of mussel Crenomytilus grayanus (Dunker, 1853) // Ocean Sci. J. 2011. Vol. 46, no 2. Р. 85-94.

9. Canesi L., Ciacci C., Fabbri R. [еt. al]. Bivalve mollusks as a unique target group for nanotoxity // Mar. Environ. Res. 2012. Vol. 76. P. 16-21.

10. Chang Y.N., Zhang M., Lin X., Zhang J., Gengmei X. The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles // Materials. 2012. Vol. 5. P. 2850-2871.

11. Ellman G.L., Courtney K.D., Andres V. Jr., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity // Biochem. Pharmacol. 1961. Vol. 7, no 1. Р. 88-95.

12. Federici G., Shaw B.J., Handy R.D. Toxicity of titanium dioxide nanoparticles rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects // Aquat. Toxicol. 2007. Vol. 87. P. 415-430.

13. Gomes T., Pinheiro J.P., Cancio I. et al. Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis // Environ. Sci. Technol. 2011. Vol. 45, no. 21. P. 9356-9362.

14. Gorbi S., Lamberti C.V., Notti A. et al. An ecotoxicological protocol with caget mussels, Mytilus galloprovincialis, for monitoring the impact of an offshore platform in the Adriatic Sea // Mar. Environ. Res. 2008. Vol. 65, no. 1. P. 34-49.

15. Joh D.Y.; Kinder J.; Herman L.H.; Ju S.Y.; Segal M.A.; Johnson J.N.; Chan G. K.L.; Park J. Single-walled carbon nanotubes as excitonic optical wires // Nat. Nanotechol. 2011. Vol. 6. P. 51-56.

16. Kopecka-Pilarczyk J., In vitro effects of pesticides and metals on the activity of acetylcholinesterase (AChE) from different tissues of the blue mussel, Mytilus trossulus L. // Journal of Environmental Science and Health. Part B. 2010. Vol. 45. P. 46-56.

17. Laurent S.; Forge D.; Port M.; Roch A.; Robic C.; van der Elst L.; Muller R.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications // Chem. Rev. 2008. Vol. 108. P. 2064-2110.

18. Lopez, J.L. Role of proteomics in taxonomy: the Mytilus complex as a model of study // J.Chromatogr. 2005. Vol. 815. P. 261-274.

19. Lowry O., Rosenbrougt N., Parr A., Randall R. Protein measurement with the Folinphenol reagent // J. Biol. Chem. 1951. Vol. 193, no 1. P. 265-276.

20. Moore M.N. Do nanoparticles present ecotoxiclological risks for the health of the aquatic environment? // Environ. Int. 2006. Vol. 32. P. 967-976.

21. Nations S., Wages M., Canas J.E., Maul J., Theodorakis C., Cobb G.P. Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis // Chemosphere.2011. Vol. 83. P. 1053-1061.

22. Shulkin V.M., Presley B.J., Kavun V.Ya. Metal concentration in mussel Crenomytilus grayanus and oyster Crassostera gigas in relation to contamination of ambient sediments // Environ. Int. 2003. Vol. 29, no. 4. P. 493-502.

23. Tang F., Li L., Chen D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery // Adv. Mater. 2012. Vol. 24. P. 1504-1534.

24. Thompson E.L.,Taylor D.A., Nair S.V., Birch G., Haynes P.A., Raftos D.A. Proteomic discovery of biomarkers of metal contamination in Sydney Rock oysters (Saccostrea glomerata) // Aquat. Toxicol. 2012. Vol. 109. P. 202-212.

25. Tsangaris C., Kormas K., Strogyloudi E. [et al]. Multiple biomarkers of pollution effects in caged mussels on the Greek coastline // Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 2010. Vol. 151, no. 3. P. 369-378.

26. Yan L., Zheng Y.B., Zhao F., Li S., Gao X., Xu B., Weiss P.S., Zhao Y. Chemistry and physics of a single atomic layer: Strategies and challenges for functionalization of graphene and graphene-based materials // Chem. Soc. Rev. 2012. Vol. 41. P. 97-114.

27. Wang Z., Li N., Zhao J. [еt. al]. CuO Nanoparticles Interaction with Human Epithelial Cells: Cellular Uptake, Location, Export, and Genotoxicology // Chem. Res. Toxicol. 2012. Vol. 25. P. 1512-1521.


Review

Views: 67


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7613 (Print)
ISSN 2712-7621 (Online)