Spatial and Temporal Features of Birch Vegetation on the Territory of the Russian Federation in the Period 1948–2016
https://doi.org/10.18384/2712-7621-2024-4-48-66
Abstract
Aim. To study geographical differences and assess trends in the vegetation period of downy birch and silver birch within their range across the natural zones of Russia (forest-tundra, taiga, mixed and broad-leaved forests, monsoon mixed forests, forest-steppe, and steppe).
Methodology. Calculations and assessments were conducted for the average long-term dates of leaf unfolding (greening) and complete leaf color change (full yellowing) of birch trees (Betula pubescens, Betula pendula Roth.) at 290 observation points during the period from 1948 to 2016, and for leaf lifespan from 1964 to 1995. Data was collected through classical phenological field observations using the primary method of recording dates of seasonal events within specified territories. Observational data were sourced from programs of the Ural Society of Natural Science Enthusiasts, the Phenological Commission of the All-Union Geographical Society, the Russian Geographical Society, and Russia’s network of protected areas. The study utilized phenological data from protected areas such as Voronezh, Central Forest, Zhiguli, Volga-Kama, Denezhkin Kamen, Basegi, Pechoro-Ilych, Vishera, Bashkir, Visim, Ilmen, South Ural, Shulgan-Tash, Shaitan-Tau, Orenburg (Burtinsky and Aytuarsky sectors), Malaya Sosva, Olekminsky, Kedrovaya Pad, Altai, Barguzinsky, Zeisky, and Sikhote-Alinsky nature reserves, as documented in the Phenological Sections of Nature Chronicles of these reserves.
Statistical analysis included the calculation of average long-term event dates (X avg.), variance (σ²), standard deviation (error) of the mean (σ), and extreme event registration dates. The speed of seasonal event progression was calculated in kilometers traveled per day. For interpolation and visualization of spatial phenological processes, the cross-platform Geographic Information System (GIS) QGIS Desktop version 3.14.16 was used.
Results. The timing and speed of birch greening and yellowing, the latitudinal phenological gradient, birch leaf lifespan, and their trends were calculated, mapped, and analyzed. During the period from 1948 to 2016, the speed of the greening wave across the European part of Russia ranged from 30 to 56 km/day, while in the Asian part, including the Far East, it ranged from 30 to 57 km/day. The speed of the yellowing wave for the same time frame was 43–60 km/day in the European part and 56–230 km/day in the Asian part. The Birch leaf lifespan ranged from 170 days in the steppe zone to 100 days at the northern range boundary. The propagation of greening and yellowing waves from 1948 to 2016 spanned 63 and 42 days across European Russia and 53 and 21 days in the Asian part, respectively. The progression of these waves is influenced by regional climate characteristics and major mountain ranges.
Research implications. The study of spatial-temporal features of vegetation in indicator species enhances our understanding of biota development patterns and their responses to climate change. The findings can be used for developing forest management strategies, planning forestry activities, and monitoring forest conditions. The study of spatial-temporal features of vegetation in indicator species enhances our understanding of biota development patterns and their responses to climate change. The findings can be used for developing forest management strategies, planning forestry activities, and monitoring forest conditions.
About the Authors
O. V. YantserRussian Federation
Oksana V. Yantser – PhD (Geography), Assoc. Prof., Department of Geography, Methods of Geographical Education and Tourism, Head of Institute of Natural Sciences, Physical Culture and Tourism
pr. Kosmonavtov 26, Yekaterinburg 620091
Yu. R. Ivanova
Russian Federation
Yu. R. Ivanova – Assist., Department of Earth and Space Science, Institute of Natural Sciences and Mathematics
ul. Kuibysheva 48a, Yekaterinburg 620026
A. A. Minin
Russian Federation
Aleksandr A. Minin – Dr. Sci. (Biology), Senior Researcher at Environmental Pollution Assessment Department of the Academician Y. A. Israel Institute of Global Climate and Ecology, Senior Researcher at Laboratory of Postnatal Ontogenesis of the N. K. Koltsov Institute of Developmental Biology RAS
ul. Glebovskaya 20B, Moscow 107258
References
1. Belova T. A., Babkina L. A. [Changes in the Content of Chlorophylls and Carotenoids in the Leaves of Woody Plants in Central Russia]. In: Auditoriya [Auditorium], 2017, no. 2, pp. 34–38.
2. Beruchashvili N. L. Chetyre izmereniya landshafta [Four Dimensions of the Landscape]. Moscow, Mysl Publ., 1986. 180 p.
3. Vetchinnikova L. V. Bereza: voprosy izmenchivosti (morfofiziologicheskiye i biokhimicheskiye aspekty) [Birch: Issues of Variability (Morphological and Biochemical Aspects)]. Moscow, Nauka Publ., 2004. 183 p.
4. Vinogradova V. V. [Zoning of Russia Based on Natural Living Conditions of the Population, Taking into Account Extreme Climatic Events]. In: Izvestiya RAN. Seriya geograficheskaya [Bulletin of the Russian Academy of Sciences. Geographical Series], 2021, vol. 85, no. 1, pp. 5–13. DOI: 10.31857/S2587556621010167
5. Zhmylev P. Yu., Zhmyleva A. P., Karpushina E. A., Titovets A. V. [Possible causes of changes in seasonal plant development due to global warming]. In: Vestnik Rossiyskogo universiteta druzhby narodov. Seriya Ekologiya i bezopasnost zhiznedeyatel'nosti. Biologicheskiye nauki [Bulletin of Peoples' Friendship University of Russia. Series Ecology and Life Safety. Biological Sciences], 2001, no. 9, pp. 98–103.
6. Voskova A. V., Gordeeva Z. I., Minin A. A. [Changes in the duration of vegetation of silver birch on the East European Plain over the past decades]. In: Izvestiya RAN. Seriya geograficheskaya [Bulletin of the Russian Academy of Sciences. Geographical Series], 2007, no. 3, pp. 59–61.
7. Vysotskaya A. A., Medvedkov A. A. [Information resources for assessing the ecological potential of geosystems (using the Yenisei North as an example)]. In: InterKarto. InterGIS [InterCarto. InterGIS], 2023, vol. 29, part 1, pp. 20–33. DOI: 10.35595/2414-9179-2023-1-29-20-33
8. Drozdov S. N., Kholoptseva E. S., Sazonova T. A. хLight and temperature characteristics of seedlings of downy birch Betula pubescens (Betulaceae). In: Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal [News of higher educational works. Forestry magazine], 2014, no. 1, pp. 27–36.
9. Elagin I. N. Sezonnoye razvitiye sosnovykh lesov [Seasonal development of pine forests]. Novosibirsk, Nauka Publ., 1976. 230 p.
10. Ermakov V. I. Mekhanizmy adaptatsii berezy k usloviyam Severa [Mechanisms of birch adaptation to Northern conditions]. Leningrad, Nauka Publ., 1986. 144 p.
11. Zaitsev G. N. Matematika v eksperimentalnoy botanike [Mathematics in experimental botany]. Moscow, Nauka Publ., 1990. 296 p.
12. Zanuzdaeva N. V., Karimova M. E. [The influence of climate change on phenomenological phenomena in the Lapland State Nature Reserve (Murmansk Region)]. In: Krivovichev S. V., ed. Trudy Kolskogo nauchnogo tsentra RAN [Transactions of the Kola Science Center of the Russian Academy of Sciences], 2021, no. 6, pp. 169–174.
13. Ivanova Yu. R., Skok N. V. [Influence of climatic parameters on the lifespan of birch foliage in Yekaterinburg in 2013–2015]. In: Yantser O. V. et al., eds. Sovremennoye sostoyaniye fenologii i perspektivy yeye razvitiya. T. 1 [Current state of phenology and prospects for its development. Vol. 1]. Yekaterinburg, Ural State Pedagogical University Publ., 2015, pp. 88–98.
14. Isachenko A. G. Teoriya i metodologiya geograficheskoy nauki [Theory and methodology of geographical science]. Moscow, Academiya Publ., 2004. 400 p.
15. Isachenko G. A. [Concepts of long-term landscape dynamics and challenges of the times]. In: Voprosy geografii: sb. 138. Gorizonty landshaftovedeniya [Questions of geography: collection 138. Landscape science horizons]. Moscow, Codex Publ., 2014, pp. 215–232.
16. Isachenko A. G. Landshafty SSSR [Landscapes of the USSR]. Moscow, Nauka Publ., 1985. 320 p.
17. Gurevskykh O. Yu., Ivanova Yu. R., Skok N. V., Yurovskikh A. M., Yantser O. V. [Study of seasonal dynamics of Ural landscapes in the paradigm of the functional-dynamic approach: history and modernity]. In: Geograficheskiy vestnik [Geographical Bulletin], 2021, no. 1, pp. 16–30.
18. Letukhova V. Yu., Zuev A. V., Potapenko I. L. Influence of climatic factors on the duration of flowering of species in the Karadag Nature Reserve. In: Vestnik Moskovskogo universiteta. Seriya 16: Biologiya [Bulletin of Moscow University. Series 16: Biology], 2022, no. 77, pp. 258–265. DOI: 10.55959/MSU0137-0952-16-2022-77-4-258-265
19. Mamai I. I. Dinamika landshaftov: metodika izucheniya [Dynamics of landscapes: study methods]. Moscow, Moscow State University Publ., 1992. 166 p.
20. Vladimirov D. R., Gladilin A. A., Gnedenko A. E., Glukhov A. I., Grudinskaya V. A., Zdravchev N. S., Lebedev P. A., et al. Metodika vedeniya fenologicheskikh nablyudeniy [Methodology for conducting phenological observations]. St. Petersburg, RGO Publ., 2023. 208 p.
21. Sezonnaya zhizn' prirody Russkikh ogranicheniy. Dnevniki prirody za 1962–1966 gg. [Seasonal life of nature on the Russian Plain. Nature diaries for 1962–1966]. Leningrad, Nauka Publ., 1970. 316 p.
22. Skok N. V. [Relationship between autumn phenophases of birch and climatic indicators of the environment]. In: Sovremennyye issledovaniya klimata i sotsial'no-ekonomicheskikh sistem. Innovatsionnyye protsessy i problemy razvitiya yestestvennonauchnogo obrazovaniya. T. 1 [Modern studies of natural and socio-economic systems. Innovative processes and problems of development of natural science education. Vol. 1]. Ekaterinburg, UrGPU Publ., 2014, pp. 171–180.
23. Soloviev A. N. [Climatogenic phenological trends and biodiversity dynamics]. In: Izmeneniye klimata i bioraznoobrazovaniye Rossii: postanovka problemy [Climate change and biodiversity of Russia: statement of the problem]. Moscow, Akropol Publ., 2007, pp. 23–56.
24. Soloviev A. N. Biota i klimat v XX stoletii [Biota and climate in the 20th century]. Moscow, Pasva Publ., 2005. 286 p.
25. Sochava V. B. Vvedeniye v obucheniye o geosistemakh [Introduction to the doctrine of geosystems]. Novosibirsk, Nauka Publ., Siberian branch, 1978. 319 p.
26. Titkova T. B., Zolotokrylin A. N. [Climate of zonal landscapes of the Russian plains under modern global warming in summer]. In: Izvestiya RAN. Seriya geograficheskaya [Bulletin of the Russian Academy of Sciences. Geographical series], 2023, vol. 87, no. 3, pp. 391–402. DOI: 10.31857/S2587556623030111
27. Feklistov P. A., Amosova I. B. Morfologo-fiziologicheskiye i ekologicheskiye osobennosti berezy povisloy (Betula pendula Roth.) v tayezhnoy zone [Morphological, physiological and ecological features of silver birch (Betula pendula Roth.) in the taiga zone]. Arkhangelsk, Northern (Arctic) Federal University named after M. V. Lomonosov Publ., 2013. 214 p.
28. Minin A. A., Rankova F. Ya., Buyvolov Yu. A., Sapelnikova I. I., Filatova T. D. Fenologicheskiye tendentsii v prirode tsentralnoy chasti Rossiyskoy Federatsii v usloviyakh sovremennogo potepleniya [Phenological trends in the nature of the central part of the Russian Plain under conditions of modern warming]. In: [Life of the Earth], 2018, vol. 40, no. 2, pp. 162–174.
29. Minin A. A., Rankova E. Ya., Rybina E. G., Buyvolov Yu. A., Sapelnikova I. I., Filatova T. D. [Phenoindication of climate change for the period 1976–2015 in the central part of European Russia: silver birch – Betula verrucosa Ehrh. (B. Pendula Roth.)]. In: Problemy ekologii i modelirovaniya ekosistem [Problems of environmental monitoring and modeling of ecosystems], 2016, vol. 27, no. 2, pp. 17–28. DOI: 10.21513/0207-2564-2016-2-17-28.
30. Gurevsky O. Yu., Kapustin V. G., Skok N. V., Yantser O. V. Fiziko-geograficheskoye rayonirovaniye i landshafty Sverdlovskoy oblasti [Physical-geographical zoning and landscapes of the Sverdlovsk region]. Yekaterinburg: UGPU Publ., 2016. 280 p.
31. Filonov K. P., Nukhimovskaya Yu. D. Letopis prirody v zapovednikakh SSSR [Chronicle of nature in the reserves of the USSR]. Moscow, Nauka Publ., 1990. 160 p.
32. Shirokova N. P., Ryabova M. S. [The relationship between phenology and biology of some species of woody plants in central Russia]. In: Molodoy uchonyy [Young scientist], 2014, no. 21.1, pp. 260–263.
33. Ovaskainen O., ed. Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology. In: Scientific Data, 2020, vol. 7, pp. 1–12. DOI: 10.1038/s41597-020-0376-z
34. Delgado M., Roslin T., Tikhonov G., Ovaskainen O. Differences in spatial versus temporal reaction norms for spring and autumn phenological events. In: Proceedings of the National Academy of Sciences, 2020, vol. 117, no. 49. P. 31249–31258. DOI: 10.1073/PNAS.2002713117
35. Khoroshev A. V., Dyakonov K. N., eds. Landscape Patterns in a Range of Spatio-Temporal Scales. In: Landscape Series 26. Cam, Springer Nature, 2020. 439 p. DOI: 10.1007/978-3-030-31185-8
36. Menzel A., Sparks T. Temperature and plant development: phenology and seasonality. In: Morecroft M., Morison J., eds. Plant Growth and Climate Change. Oxford, 2007, pp. 70–95. DOI:10.1002/9780470988695.ch4
37. Montgomery R. A., Rice K. E., Stefanski A., Rich R. L., Reich P. B. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. In: Proceedings of the National Academy of Sciences, 2020, vol. 117, no. 19, pp. 10397–10405. DOI: 10.1073/pnas.1917508117
38. Tansey C. J., Hadfield J. D., Phillimore A. B. Estimating the ability of plants to plastically track temperature-mediated shifts in the spring phenological optimum. In: Global Change Biology, 2017, vol. 23, no. 8, pp. 3321–3334. DOI: 10.1111/gcb.13624