Biotransformation of xenobiotics by molluscs (Mollusca L., 1758) – indicators of aquatic ecosystem pollution
https://doi.org/10.18384/2712-7621-2024-1-154-181
Abstract
Aim. To describe the general scheme of molecular interactions underlying the biotransformation of xenobiotics in mollusks on the base of scientific literature data.
Procedure and methods. Published data in thematic literature devoted to the study of biochemical and molecular-biological processes associated with the reaction of mollusks to xenobiotics were analyzed and summarized. Scientific publications were searched on specialized information resources: Russian Scientific Electronic Library, Russian State Library, Google Academy, National Library of Medicine, GenBank International Molecular Genetic Database.
Results. There was analyzed the structure of the digestive gland (liver, or hepatopancreas) and gills – the main organs involved in the biotransformation of xenobiotics in various taxonomic groups of bivalves and gastropods (containing about 98% of species of this phylum). Data on the anatomical, tissue and cellular structure of the digestive gland are presented. The NADPH-dependent and NADPH-independent oxidation of xenobiotics by the cytochrome P450 system and the main types of chemical reactions carried out by it (hydroxylation, oxidative deamination, nitrogen oxidation, sulfoxidation, dealkylation, epoxidation) with specific examples, the conjugation process of polarized xenobiotics with the reduced form of glutathione catalyzing by glutathione-S-transferase are described. The role of cellular organelles (lysosomes, peroxisomes, endosomes, rough endoplasmic reticulum) in the biotransformation of xenobiotics by mollusks is established.
Research implications. Systematized data on the process of biotransformation of xenobiotics in the body of mollusks, which makes it possible to outline goals for further study of their biochemical and molecular biological features, plan comprehensive studies using these animals to bioindicate the level of pollution of the aquatic environment, as well as outline the points of contact of educational programs of various disciplines.
About the Authors
E. M. ShchelkanovRussian Federation
Egor M. Shchelkanov – Student, Department of General Biology and Bioecology, Faculty of Natural Sciences
ul. Very Voloshinoi 24, Mytishchi 141014, Moscow Region
E. A. Tishina
Russian Federation
Ekaterina A. Tishina – Head of Laboratory, Educational Laboratory of Applied Chemistry; Assistant, Department of Theoretical and Applied Chemistry, Faculty of Natural Sciences
ul. Very Voloshinoi 24, Mytishchi 141014, Moscow Region
Yu. I. Manukov
Russian Federation
Yury I. Manukov – PhD (Biology), Assoc. Prof., Department of General Biology and Bioecology, Faculty of Natural Sciences
ul. Very Voloshinoi 24, Mytishchi 141014, Moscow Region
V. P. Saprykin
Russian Federation
Vladimir P. Saprykin – Dr. Sci. (Medicine), Prof., Department of Physiology, Human Ecology and Biomedical Knowledge, Faculty of Natural Sciences
ul. Very Voloshinoi 24, Mytishchi 141014, Moscow Region
References
1. Aleksandrova M.V. [Features of Chinese export of aquatic products]. In: Kitay v mirovoy i regionalnoy politike. Istoriya i sovremennost [China in world and regional politics. History and modernity], 2020, vol.25, no.25, pp.349–370. DOI: 10.24411/2618-6888-2020-10021
2. Alimdzhanov N.N. [Environmental aspects of chemicalization in agriculture]. In: Ekonomika i sotsium [Economics and society], 2020, no.6, pp.345–350.
3. Voronchikhina K.A., Petrenko D.B., Vasilyev N.V. [Assessment of the ecological state of surface waters of urbanized territories of the Moscow region according to their macrocomponent composition]. In: Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Yestestvennyye nauki [Bulletin of the Moscow State Regional University. Series: Natural Sciences], 2017, no.4, pp.76–86. DOI: 10.18384/2310-7189-2017-4-76-86
4. Detenchuk E.A., Lebedev A.T. [Transformation of organic compounds during disinfection of drinking water]. In: Analitika [Analytics], 2020, vol.10, no.6, pp.454–463. DOI: 10.22184/2227-572X.2020.10.6.454.462
5. Droganova T.S., Polikarpova L.V., Tishina E.A. [Changes in the activity and multiple forms of acid phosphatase of the viviparous river under the influence of herbicides based on glyphosate]. In: Pishchenko E.V., Moruzi I.V., eds. Sovremennoye sostoyaniye vodnykh bioresursov [Current state of aquatic bioresources], 2019, pp.64–67.
6. Pasternak R.K., ed. Zhizn zhivotnykh. T. 2. Mollyuski. Iglokozhiye. Pogonofory. Shchetinkochelyustnyye. Polukhordovyye. Khordovyye. Chlenistonogiye. Rakoobraznyye [Animal life. Vol.2. Mollusks. Echinoderms. Pogonophora. Chaetognathous. Hemichordates. Chordata. Arthropods. Crustaceans]. Moscow, Prosveshcheniye Publ., 1988. 447 p.
7. Istomina A.A., Mazur A.A., Chelomin V.P., Kukla S.P., Slobodskova V.V., Zvyagintsev A.Yu., Fedorets Yu.V., et al. [Integrated response of biomarkers when assessing the quality of the marine environment using the example of the bivalve mollusk Mytilus trossulus (Gould, 1850)]. In: Biologiya morya [Biology of the sea], 2021, vol.47, no.3, pp.176–183. DOI: 10.31857/S0134347521030062
8. Savostikova O.N., Mamonov R.A., Tyurina I.A., Alekseeva A.V., Nikolaeva N.I. [Xenobiotics and products of their transformation in wastewater (literature review)]. In: Gigiyena i sanitariya [Hygiene and Sanitation], 2021, vol.100, no.11, pp.1218–1223. DOI: 10.47470/0016-9900-2021-100-11-1218-1223
9. Lukyanova O.N., Ireikina S.A. [Glutathione-S-transferase as a molecular marker of the state of marine organisms under anthropogenic influence]. In: Izvestiya RAN. Seriya biologicheskaya [Izvestia RAS. Biological series], 2011, no.4, pp.456–462.
10. Kharlamova D.S., Tishina E.A., Droganova T.S., Petrenko D.B., Polikarpova L.V. [Assessment of the influence of diazinon on the activity of acid phosphatase of the river viviparous]. In: Yunusova Kh.B., ed. Aktualnyye problemy biologicheskoy i mediko-ekologii [Current problems of biological and chemical ecology]. Moscow, MRSU Ed. of Publ., 2021, pp.292–299.
11. Pavlov Yu.A. [US environmental war in Vietnam (1961–1975): results and lessons]. In: Sotsialnyye i gumanitarnyye nauki na Dalnem Vostoke [Social and humanitarian sciences in the Far East], 2021, vol.18, no.3, pp.89–93. DOI: 10.31079/1992-2868-2021-18-3-89-93
12. Betin O.I., Truba A.S., Cherdantsev V.P., Tronina M.V. [Increasing the efficiency of aquaculture production through the development of digital information technologies]. In: Voprosy rybolovstva [Questions of fishing], 2022, vol.23, no.3, pp.163–170. DOI: 10.36038/0234-2774-2022-23-3-163-170
13. Popov A.P. Mnozhestvennyye formy fermentov zhivorodki rechnoy kak markory toksicheskogo zagryazneniya vody: dis. … kand. biol. nauk [Multiple forms of viviparous enzymes as markers of toxic water pollution: Cand. Sci. thesis in Biological sciences]. Moscow, MPGU, 2002. 171 p.
14. Stonik V.A., Stonik I.V. [Marine toxins: chemical and biological aspects of study]. In: Uspekhi khimii [Advances in Chemistry], 2010, vol.79, no.5, pp.442–465.
15. Tishina E.A., Droganova T.S., Polikarpova L.V. [Effect of herbicides based on 2,4-D on the activity of acid phosphatase of the viviparus viviparus L.]. In: Yunusova Kh.B., ed. Aktualnyye problemy biologicheskoy i khimicheskoy ekologii [Current problems of biological and chemical ecology]. Moscow, MRSU Ed. of Publ., 2021, pp.287–292.
16. Uvaeva E.I. [The influence of anthropogenic load in the Teterev River basin on the population indicators of the marsh viviparus Viviparus contectus (Mollusca, Gastropoda, Viviparidae)]. In: Vestnik Grodnenskogo gosudarstvennogo universiteta imeni Yanki Kupaly. Seriya 5. Ekonomika. Sotsiologiya. Biologiya [Bulletin of the Grodno State University named after Yanka Kupala. Series 5. Economics. Sociology. Biology], 2020, vol.10, no.1, pp.133–140.
17. Usheva L.N., Frolova L.T. [Morphofunctional changes in the digestive gland in the bivalve mollusk Crenomytilus grayanus (Dunker, 1853)]. In: Biologiya morya [Marine Biology], 2006, vol.32, no.2, pp.115–124.
18. Chernova E.N., Russkikh Y.V., Zhakovskaya Z.A. [Toxic metabolites of blue-green algae and methods for their determination]. In: Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta. Seriya: Fizika i khimiya [Bulletin of St.Petersburg State University. Series: Physics and Chemistry], 2017, vol.4, no.4, pp.440–473. DOI: 10.21638/11701/spbu04.2017.408
19. Shchelkanov E.M., Manukov Yu.I., Nikiforova E.V. [Algoepibiome of mammals: toxicogenic and pathogenetic aspects]. In: Lyubchenko E.M., ed. [Veterinary and biological aspects in the diagnosis and treatment of wild animals]. Ussuriysk, 2023, pp.26–48.
20. Au D.W. The application of histo-cytopathological biomarkers in marine pollution monitoring: a review. In: Marine Pollution Bulletin, 2004, vol.48, no.9-10, pp.817–834. DOI: 10.1016/j.marpolbul.2004.02.032
21. Michel X., Salaun J.-P., Galgani F., Narbonne J.-F. Benzo(a)pyrene hydroxylase activity in the marine mussel Mytilus galloprovincialis: a potential marker of contamination by polycyclic aromatic hydrocarbon-type compounds. In: Marine Environmental Research, 1994, vol.38, pp.257–273.
22. Ribeiro E.B., Noleto K.S., Oliveira de S.R.S., Batista de Jesus W., Sousa Serra de I.M.R., Silva de Almeida da Z., Sousa de Oliveira Mota Andrade de T., et al. Biomarkers (glutathione S-transferase and catalase) and microorganisms in soft tissues of Crassostrea rhizophorae to assess contamination of seafood in Brazil. In: Marine Pollution Bulletin, 2020, vol.158. DOI: 10.1016/j.marpolbul.2020.111348
23. Blanco J. Accumulation of Dinophysis toxins in bivalve mollusks. In: Toxins (Basel), 2018, vol.10, no.11. DOI: 10.3390/toxins10110453
24. Fitzpatrick P.J., Krag T.O.B., Højrup P., Sheehan A. Characterization of a glutathione Stransferase and a related glutathione-binding protein from gill of the blue mussel, Mytilus edulis. In: Biochemistry Journal, 1995, vol.305, pp.145–150. DOI: 10.1042/bj3050145
25. Haque M.N., Eom H.-J., Nam S.-E., Shin Y.K., Rhee J.-S. Chlorothalonil induces oxidative stress and reduces enzymatic activities of Na+/K+-ATPase and acetylcholinesterase in gill tissues of marine bivalves. In: PLoS One, 2019, vol.14, no.4. DOI: 10.1371/journal.pone.0214236
26. Dagnino A., Allen J.I., Moore M.N., Broeg K., Canesi L., Viarengo A. Development of an expert system for the integration of biomarker responses in mussels into an animal health index. In: Biomarkers, 2007, vol.12, no.2, pp.155–172. DOI: 10.1080/13547500601037171
27. Della-Torre C., Bocci E., Focardi S.E., Corsi I. Differential ABCB and ABCC gene expression and efflux activities in gills and hemocytes of Mytilus galloprovincialis and their involvement in cadmium response. In: Marine Environmental Research, 2014, vol.93, pp.56–63. DOI: 10.1016/j.marenvres.2013.06.005
28. Eskelinen E.L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. In: Molecular Aspects of Medicine, 2006, vol.27, no.5-6, pp.495–502. DOI: 10.1016/j.mam.2006.08.005
29. Wootton A.N., Herring C., Spry J.A., Wiseman A., Livingstone D.R., Goldfarb P.S. Evidence for the existence of cytochrome P450 gene families (CYP1A, 3A, 4A, 11A) and modulation of gene expression (CYP1A) in the mussel Mytilus spp. In: Marine Environmental Research, 1985, vol.39, pp.21–26.
30. Guerreiro A.D.S., Monteiro J.S., Medeiros I.D., Sandrini J.Z. First evidence of transcriptional modulation by chlorothalonil in mussels Perna perna. In: Chemosphere, 2020, vol.255. DOI: 10.1016/j.chemosphere.2020.126947
31. Gupta S.A. Calcium storage and distribution in the digestive gland of Bensonia monticola (Gastropoda: Pulmonata): A histophysiological study. In: Biological Bulletin, 1977, no.153, pp.369–376.
32. Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. In: Journal of Biological Chemistry, 1974, vol.249, no.22, pp.7130–7139.
33. Wolfe D.A., Clark R.C.Jr., Foster C.A., Hawkes J.W., Macleod W.D.Jr. Hydrocarbon accumulation and histopathology in bivalve molluscs transplanted to the Baie de Morlaix and the Rade de Brest. In: Proceedings of the International Symposium Centre Oceanologique de Bretagne Breste (France). Breste, 1981, pp.599–616.
34. Zanette J., Goldstone J.V., Bainy A.C., Stegeman J.J. Identification of CYP genes in Mytilus (mussel) and Crassostrea (oyster) species: first approach to the full complement of cytochrome P450 genes in bivalves. In: Marine Environmental Research, 2010, vol.69, pp.S1–S3. DOI: 10.1016/j.marenvres.2009.10.013
35. Guo H., Bao Z., Du H., Zhang L. , Wang S., Sun L. , Mou X., et al. Identification of cytochrome P450 (CYP) genes in zhikong scallop (Chlamys farreri). In: Journal of Ocean University of China (Oceanic and Coastal Sea Research), 2013, vol.12, no.1, pp.97–102. DOI: 10.1007/s11802-013-1967-5
36. Livingstone D.R. The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. In: Comparative Biochemistry and Physiology. Part A, 1998, vol.120, no.1, pp.43–49. DOI: 10.1016/s1095-6433(98)10008-9
37. Livingstone D.R., Kirchin M.A., Wiseman A. Cytochrome P450 and oxidative metabolism in mollusks. In: Xenobiotica, 1989, vol.19, pp.1041–1062. DOI: 10.3109/00498258909043161
38. Lobo-da-Cunha A. Structure and function of the digestive system in mollusks. In: Cell Tissue Research, 2019, vol.377, no.3, pp.475–503. DOI: 10.1007/s00441-019-03085-9
39. Lobo-da-Cunha A., Alves A., Oliveira E., Calado G. Functional histology and ultrastructure of the digestive tract in two species of chitons (Mollusca, Polyplacophora). In: Journal of Marine Science and Engineering, 2022, vol.10, no.2. DOI: 10.3390/jmse10020160
40. Martinez-Gomez C., Bignell J., Lowe D. Lysosomal membrane stability in mussels. In: ICES Techniques in Marine Environmental Sciences, 2015, vol.56, pp.1-41. DOI: 10.25607/OBP-240
41. Nelson D.R., Goldstone J.V., Stegeman J.J. The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. In: Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, vol.368. DOI: 10.1098/rstb.2012.0474
42. Peters L.D., Livingstone D.R. Induction of molluscan cytochrome P450 monooxygenase system as a biomarker of organic pollution in environmental monitoring. In: Garrigues Ph., Barth H., Walker C.H., Narbonne J.F., eds. Biomarkers in Marine Organisms: A Practical Approach. Elsevier, 2001. Chapter 1. P.1–28.
43. Schlenk D., Buhler D.R. Xenobiotic biotransformation in the pacific oyster (Crassostrea gigas). In:: Comparative Biochemistry and Physiology. Part C: Toxicology and Pharmacology, 1989, vol.94, pp.469–475. DOI: 10.1016/0742-8413(89)90100-x
44. Sole M., Livingstone D.R. Components of the cytochrome P450-dependent monooxygenase system and ‘NADPH-independent benzo[a]pyrene hydroxylase’ activity in a wide range of marine invertebrate species. In: Comparative Biochemistry and Physiology. Part C: Toxicology and Pharmacology, 2005, vol.141, pp.20–31. DOI: 10.1016/j.cca.2005.04.008
45. Nebert D.W., Adesnik M., Coon M.J., Estabrook R.W., Gonzalez F.J., Guengerich F.P., Gunsalus I.C., et al. The P450 gene superfamily: recommended nomenclature. In: DNA and Cell Biology, 1987, vol.6, no.1, pp.1–11. DOI: 10.1089/dna.1991.10.1
46. Pessatti T.B., Luechmann K.H., Flores-Nunes F., Mattos J.J., Sasaki S.T., Taniguchi S., Bicego M.C., et al. Upregulation of biotransformation genes in gills of oyster Crassostrea brasiliana exposed in situ to urban effluents, Florianopolis Bay, Southern Brazil. In: Ecotoxicology and Environmental Safety, 2016, vol.131, pp.172–180. DOI: 10.1016/j.ecoenv.2016.04.003
47. Ibor O.R., Adeogun A.O., Regoli F., Arukwe A. Xenobiotic biotransformation, oxidative stress and obesogenic molecular biomarker responses in Tilapia guineensis from Eleyele Lake, Nigeria. In: Ecotoxicology and Environmental Safety, 2019, vol.169, pp.255–265. DOI: 10.1016/j.ecoenv.2018.11.021
48. Young A.L. The history, use, disposition and environmental fate of agent orange. NY, Springer Science, 2009. 339 p.
49. Zhou Y., Yao L. , Pan L. , Wang H. Bioaccumulation and function analysis of glutathione S-transferase isoforms in Manila clam Ruditapes philippinarum exposed to different kinds of PAHs. In: Journal of Environmental Sciences (China), 2022, vol.112, pp.129–139. DOI: 10.1016/j.jes.2021.05.010