Preview

Geographical Environment and Living Systems

Advanced search

THE SPECTRAL LAND FORM SIGNATURES FOR AUTOMATIC TERRAIN CLASSIFICATION (ON THE EXAMPLE OF SOUTH AMERICA)

https://doi.org/ 10.18384/2310-7189-2018-4-39-49

Abstract

The way for computing some spectral landform’s characteristics (SLCs) is described on the example of the territory of the South America. SLCs can be potentially used for terrain classification with regard to the topographic dissection character, and then for a terrain thematic mapping. Five digital models in the small scale are designed: maximum of the wave’s magnitudes, the importance of the given share of waves, the general direction of height fluctuations, the severity of this direction, and the general wavelength. The distributions of some characteristics are largely correlated with the canonical geomorphometric variables; however, this relation is far from functional, other SLCs being completely independent. The Kohonen neural network dividing the South America territory into 225 separate neurons is constructed. The neurons with the hierarchical clustering are combined into 4 more general groups. Each group is defined by a typical combination of five SLCs. The scheme of the South America terrain clusters which reflect the types of topographic dissection is constructed.

About the Authors

Sergey V. Kharchenko
Lomonosov Moscow State University; Institute of Geography, Russian Academy of Sciences
Russian Federation


Stanislav G. Kazakov
Kursk State University
Russian Federation


References

1. Ласточкин А.Н., Одесский И.А. Гармонический анализ гипсометрических профилей с целью выявления волнообразных деформаций // Геоморфология. 1970. № 2. С. 78-88.

2. Харченко С.В. К вопросу о применении гармонического анализа при количественной характеристике рельефа // Геоморфология. 2017. № 2. С. 14-24.

3. Шарапов И. П. Функции распределения высоты рельефа // Рельеф Земли и математика / Под ред. А.С. Девдариани. М.: Мысль, 1967. С. 72-79.

4. Bugnicourt P., Guitet S., Santos V.F., Blanc L., Sotta E.D., Barbier N., Couteron P. Using textural analysis for regional landform and landscape mapping, Eastern Guiana Shield // Geomorphology. 2018. Vol. 317. P. 23-44.

5. Davis J.D., Chojnacki J.D. Two-dimensional discrete Fourier transform analysis of karst and coral reef morphologies // Transactions in GIS. 2017. Vol. 21. № 3. P. 521-545.

6. Kharchenko S.V., Bolysov S.I. Using of the spectral geomorphometric characteristics for automatized classification of landforms (on the example of australia) // 18th International Multidisciplinary Scientific GeoConference SGEM 2018. Section Cartography and GIS. Albena, Bulgaria, 2018. P. 719-724.

7. Pike R.J., Rozema W.J. Spectral analysis of landforms // Annals of the Assoc. of American Geographers. 1975. Vol. 65. No. 4. P. 499-516.

8. Rayner J.N. The application of harmonic and spectral analysis to study of terrain // Spatial Analysis in Geomorphology. London: Methuen & Co Ltd., 1972. P. 283-302.

9. Sangireddy H., Stark C.P., Passalacqua P. Multiresolution analysis of characteristic length scales with high-resolution topographic data // Journal of Geophysical Research: Earth Surface. 2017. Vol. 122. № 7. P. 1296-1324.

10. Sayre R., Bow J., Josse C., Sotomayor L., Touval J. Terrestrial Ecosystems of South America // North America land cover summit: a special issue of the Association of American Geographers. Washington, DC: Association of American Geographers, 2008. P. 131-152.

11. Mokarram M., Sathyamoorthy D. Clustering of landforms using self-organizing maps (SOM) in the west of Fars province // IOP Conf. Series: Earth and Environmental Science. 2016. No. 37. 012009.


Review

Views: 119


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7613 (Print)
ISSN 2712-7621 (Online)