Preview

Geographical Environment and Living Systems

Advanced search

THE THEORY OF DETERMINISTIC CHAOS FOR THE DESCRIPTION OF THE ECOLOGICAL AND MEDICAL SYSTEM

https://doi.org/10.18384/2712-7621-2021-3-96-109

Abstract

Aim. We develop a universal model based on the theory of deterministic chaos to describe the development of the ecological and medical system (EMS). Methodology. The description of EMS using the theory of deterministic chaos assumes the already existing Feigenbaum mathematical model to be “equipped” with measurable environmental and medical values that have statistical meaning. In the environmental medical system, there are both random factors associated with the uncertainty of the level of pollution of the environment, and deterministic ones associated with ordered human activity. It is necessary to identify the random component - the law of distribution of the level of environmental pollution by concentrations of pollutants - and correlate it with the deterministic component (maximum permissible concentration), which provides a safe level of certainty. The Feigenbaum model modified for the environmental-medical system allows one to assess the current instability of EMS at a known level of environmental-medical entropy, as well as make a prediction of its development over 100 years with a change in technological load. Results. To describe EMS, new concepts of environmental-medical entropy and environmental-medical risk have been introduced. Depending on the level of environmental degradation, three fundamental periods of EMS development are identified: dynamic mode with deterministic connections of entropy and stability of the environmental-medical system; a transitional regime with two subsequent crises (bifurcations); AND a chaotic regime with rapidly recurring crises, but with the existence of a window of opportunity for the emergence of a new population. Ranking of states of ecological-medical system according to ranks of environmental degradation and instability of EMS (from absolutely stable state R=0 to absolutely chaotic R=1) is made. Examples of EMS stability change at different levels of man-made environmental load are presented. It is shown that at the level of ecological-medical entropy S≤1,1 and the level of its instability R≤0,1 the system is in the rank of normal and self-recovers over time; at 1.1

About the Authors

O. V. Bazarsky
N. E. Zhukovsky and Y. A. Gagarin Air Force Academy
Russian Federation


Z. Yu. Kochetova
N. E. Zhukovsky and Y. A. Gagarin Air Force Academy
Russian Federation


References

1. Базарский О. В., Кочетова Ж. Ю. Энтропия абиотических геосфер и модель для оценки и прогноза их состояния // Биосфера. 2021. Т. 13. № 1-2. С. 9-14.

2. Белоусов Б. П. Периодически действующая реакция и ее механизм. Автоволновые процессы в системах с диффузией. Горький: Институт прикладной физики АН СССР, 1981. 287 с.

3. Дмитриев А. Хаос, фракталы и информация // Наука и жизнь. 2001. № 5. С. 41-55.

4. Компьютеры и нелинейные явления: Информатика и современное естествознание / под ред. А. А. Самарского. М.: Наука, 1988. 192 с.

5. Кочетова Ж. Ю., Базарский О. В., Маслова Н. В. Сравнительный анализ интегральных показателей загрязнения почвогрунтов урбанизированных территорий приоритетными контаминантами // Вестник Кузбасского государственного технического университета. 2018. № 1 (125). С. 28-37.

6. Купцов П. В. Вычисление показателей Ляпунова для распределенных систем: преимущества и недостатки различных численных методов // Известия высших учебных заведений. Прикладная нелинейная динамика. 2010. Т. 18. Вып. 5. С. 93-111.

7. Николис Г., Пригожин И. Самоорганизация в неравновесных системах. От диссипативных структур к упорядоченности через флуктуации. М.: Мир, 1979. 512 с.

8. Пригожин И. Время, структура и флуктуации // Успехи физических наук. 1980. Т. 131. № 2. С. 185-207.

9. Розенберг Г. С. Информационный индекс и разнообразие: Больцман, Котельников, Шеннон, Уивер // Самарская Лука: Проблемы региональной и глобальной экологии. 2010. Т. 19. № 2. С.4-25.

10. Трубецков Д. И. Турбулентность и детерминированный хаос // Соровский образовательный журнал. Физика. 1998. № 1. С. 77-83.

11. Aoki I. Entropy principle for the evolution of living systems and the universe from bacteria to the universe // Journal of the Physical Society of Japa. 2018. Vol. 8. № 1. P. 1-8.

12. Kay J. J, Schneider E. D. Embracing complexity - The challenge of the ecosystem approach // Perspectives on Ecological Integrity. 1995. Vol. 5. P. 49-59.

13. Lorenz Е. N. Deterministic nonperiodic flow // Journal of the Atmospheric Sciences. 1963. Vol. 20. P. 130-141.

14. Martyushev L. M. Minimal time, Weibull distribution and maximum entropy production principle: Comment on «Redundancy principle and the role of extreme statistics in molecular and cellular biology» // Physics of Life Reviews. 2019. Vol. 28. P. 83-84.

15. Principles of Ecology Revisited: Integrating Information and Ecological Theories for a More Unified Science / M. I. O’Connor, M. W. Pennell, F. Altermatt, B. Matthews, C. J. Meliбn, A. Gonzalez // Frontiers in Ecology and Evolution. 2019. Vol. 7. P. 219.

16. Schneider E. D., Kay J. J. Complexity and thermodynamics. Towards a new ecology // Futures. 1994. Vol. 26. P. 626-647.

17. Schrodinger E. What is life? Dublin, 1943. 32 р.

18. Skene K. R. Life’s a gas: A thermodynamic theory of biological evolution // Entropy. 2015. Vol. 17. P. 5522-5548.

19. Skene K. R. Thermodynamics, ecology and evolutionary biology: A bridge over troubled water or common ground? // Acta Oecologica. 2017. Vol. 85. P. 116-125.


Review

Views: 77


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7613 (Print)
ISSN 2712-7621 (Online)