УДК 574.5(533/534)

Аль-Ахваль Н.С., Семин Е.Г.

Санкт-Петербургский государственный политехнический университет

ВЛИЯНИЯ ФИЛЬТРАТА ПОЛИГОНА ОТХОДОВ НА ЗАГРЯЗНЕНИЯ ГРУНТОВЫХ ВОД В ГОРОДЕ САНЕ (ЙЕМЕН)*

N. Al-Ahwal, E. Semin

Saint-Petersburg State Polytechnical University

THE EFFECT OF LANDFILL LEACHATE ON GROUNDWATER POLLUTION IN SANA'A CITY, YEMEN

Аннотациия. Статья посвящена влиянию полигона отходов «Аль-Азракейн» на загрязнение окружающей среды и грунтовых вод в городе Сана (столице Йемена). Были изучены физические и химические характеристики образцов фильтрата и грунтовых вод, взятых со свалки и окрестностей полигона отходов г. Сана. Характеристики включают в себя следующие данные: рН, проводимость (УЭП), БПК5, ХПК, щелочность. Установлено, что образцы содержат взвешенные вещества, катионы тяжелых металлов и ионы азотных соединений.

Результаты анализа показали, что полигон может оказывать большое воздействие на загрязнение окружающей среды и подземных вод. что представляет серьезную проблему, так как подземные воды являются источником питьевой воды для более чем 90% населения Саны. В статье показана значимость использования высокоосновных сорбентов-осадителей отходов для очистки фильтратов полигона отходов.

Ключевые слова: г. Сана; полигон; грунтовые воды; загрязнение; фильтрат; тяжелые металлы.

Abstract. This article shows the effect of "Al-Azrakeen" landfill on pollution the environment and groundwater in Sana'a city the capital of Yemen. The article demonstrates the results of analysis samples of leachate and ground water taken from the landfill and the surrounding area of the landfill. Several physical and chemical parameters were estimated, this includes pH, electrical conductivity, BOD5, COD and total dissolved solids, major cations, main anions, and heavy metals. These results show that the landfill plays an important role in the surrounding groundwater pollution that requires quick solutions especially that the most Yemenis live in rural areas and are dependent on the use of natural resources. Groundwater is the source of drinking water for over 90% of the population in Sana'a.

The article proves the importance of using absorbent materials for treatment landfill leachate.

Key words: Sana'a Landfill; ground-water; pollution; Leachate; Heavy metals.

Одной из крупных нерешенных экологических и социальных проблем является снижение негативного воздействия полигонов захоронения и свалок твердых коммунальных и промышленных отходов, обусловленного фильтрационными водами, на объекты гидросферы [1]. Накопление фильтрата полигона зависит от климатических факторов, влажности отходов, инженерной инфраструктуры полигона, предварительной обработки отходов. Сегодня в городе Сане нет ни одного специализированного предприятия по комплексной переработке отходов, и практически все они захораниваются на свалке отходов «Аль-Азракейн».

Полигон (Аль-Азракейн) находится в 16 км от центра города; в настоящее время это государственное предприятие. Полигон отходов был создан в 1978 г. для приема, обезвереживания и захоронения всех отходов. Полигон занимает плошадь 345.400 м² и расположен на северо-западе города вблизи плодородных сельскохозяйственных земель и жилых районов. Фильтрат на полигоне выходит на поверхность и накапливается в углублениях рельефа местности между массивом отходов. Для определения степени опас-

^{* ©} Аль-Ахваль Н.С., Семин Е.Г.

Таблица 1

Показатель	Фильтрат 1	Фильтрат 2	Фильтрат 3					
Цвет	Серо черный	Серо-черный	Серо-черный					
PH	6.5	6.8	6.1					
Проводимость (УЭП) (мS/cm)	27900	27800	27700					
Температура (t)	22.9	22.8	22.6					
БПК ₅ ,мг/л	820	816	812					
ХПК,мг/л	54400	54200	54000					
БПК₅/ХПК	0.02	0.02	0.02					
Щелочность мг-экв/л	2300	2500	2200					
ТДС,мг/л	18135	18070	18050					
Взвешенные вещества	330	320	310					
Концентрация основных ионов и азотных соединений								
Фториды (F ⁻) ,мг/л	230	217	204					
Азот аммиачный (NH $_{_4}^-$),мг/л	725	525	325					
Азот нитритный (NO_{2}^{-}),мг/л	0.039	0.039	0.039					
Нитраты (NO⁻₃),мг/л	11.1	11.4	11.6					
Хлориды (Cl¯),мг/л	2459.3	2279.3	2099.3					
Сульфаты (So ₄ ⁻²),мг/л	550	500	450					
Концент	рация основных катис	ЭНОВ						
Магний (Mg),мг/л	470.36	393.77	313.52					
Калий(К),мг/л	1600	1550	1500					
Кальций(Са),мг/л	4000.23	3687.36	3200.21					
Марганец (Мп),мг/л	17.5	17	16.8					
Железо (Fe),мг/л	26.5	25.5	25					
Натрий(Na),мг/л	3700	3600	3500					
Концен	трация тяжелых метал	лов						
Никель (Ni),мг/л	2.95	2.78	2.1					
Хром общий (Сг),мг/л	0.169	0.162	0.159					
Цинк (Zn), мг/л	6.2	5.8	5.1					
Свинец (Pb), мг/л	2.72	2.525	2.31					
Кадмий (Cd),мг/л	1.58	1.575	1.52					
Медь (Cu),мг/л	13.5	12.8	12					
Кобальт (Со),мг/л	4.9	4.8	4.6					

ности фильтрата на свалке Аль-Азракейн для окружающей среды и рациональных методов их обработки требуется более подробное знание состава и содержания в нем загрязняющих веществ.

Методы исследования

На первом этапе со свалки Аль-Азракейн было взято 3 образца фильтрата (табл. 1). На втором этапе из близлежащих к свалке районов было также взято 3 образца грунтовых

вод. Взятые пробы были проанализированы (табл. 2). При определении химического состава образца были использованы методы спектрофотометрического, спектрометрического анализа индуцированно-связанной плазмы, а также титриметрический метод анализа.

Программа анализа пробы фильтрата включает в себя определение 23 химических компонентов. В таблице представлен состав неорганических загрязнений и их концентраций в фильтрате полигона отходов г. Сана по данным Аль-Ахваль Несрен.

Таблица 2 Химический состав грунтовых вод по данным анализа отбора проб, проведенного в 2010 г. (по данным Аль-Ахвал Несрен)

Показатель	1	2	3	ПДК для ВОЗ*	ПДК для Йемена	
Марганец (Мп),мг/л	0.117	0.128	0.145	0.1-0.5	0.1-0.2	
Медь (Си),мг/л	0.12	0.15	0.16	1.0-2.0	0.5-1	
Железо (Fe),мг/л	0.31	0.51	0.52	0.3	0.3	
Никель(Ni) ,мг/л	0.02	0.04	0.05	0.02	0.01	
Хром общий (Cr),мг/л	0.0065	0.04	0.085	0.05	0.05	
Цинк (Zn),мг/л	0.13	0.17	0.18	3	5	
Кадмий (Cd),мг/л	0.0019	0.0025	0.0057	0.003	0.005	
Фториды (F),мг/л	1.15	1.19	1.75	0.5-1.5	0.5-1.5	
Свинец (Рb),мг/л	0.015	0.017	0.019	0.01	0.05	

^{*}Всемирная организация здравоохранения

Таблица 3

Нименование компонентов	Концентрация в фильтрате, мг/дм3			Проба после отчистки, мг/дм ³			ПДК для	ПДК для		
	Сана	СПБ	Москва	Воронеж	Сана	СПБ	Москва	Воронеж	СПБ	Йемена
PH	6,8	7,05	7,8	8,45	6,5	7,0	6,7	7,03	7,0	6,5 - 8,5
Взвешенные вещества	320	2000	157	2348	20	-	10	-	-	-
Азот аммиачный	525	590	491	530	1,60	1,8	66	1,60	-	-
Нитраты	11,4	1600	19,4	1860	2,1	2,6	2,74	3,1	-	50
Азот нитритный	0,039	14,0	0,097	12,5	0,031	0,1	0,094	0,1	-	-
Хлориды	2279,3	350	2800	465	590	340	2100	343	350	600
Сульфаты	500	35	490	32,7	400	30	820	29,2	-	400
БПК₅	816	68	7,2	74	5,0	3,0	4,9	3,0	3,0	5,0
Марганец	17,0	1,32	0,10	1,20	0,08	0,05	0,05	-	0,1	0,1
Калий	1550	55	460	→ 50	1100	50	350	48	-	-
Кальций	3687,36	243	190	240	150	20	10	17	-	200
Магний	393,77	80	140	76	120	40	80	35	-	-
Железо	25,5	36,0	2,96	34,0	0,3	0,3	0,02	0,27	0,3	0,3
Натрий	3600	153	1700	→ 50	500	150	950	143	-	400
Никель	2,78	0,31	0,34	0,28	0,009	0,05	0,008	-	0,1	0,01
Хром общий	0,162	0,31	0,14	0,29	0,01	0,01	0,004	0,013	-	0,05
Свинец	2,525	0,22	0,05	0,19	0,03	0,02	0,005	0,013	0,03	0,05
Кадмий	1,575	-	-	-	0,005	-	-	-	-	0,005
Медь	12,8	0,323	0,23	0,320	0,6	0,02	0,05	0,025	-	0,5-1
Нефтепродук- ты	0,80	0,2	0,71	0,95	0,14	0,01	0,12	0,05	0,3	-
Карбонат-ион	3050	1820	1820	-	200	150	180	153	-	-

Исследования химического состава фильтрата с полигона захоронения отходов г. Сана показали: этих растворов. Табл. 3 содержит данные по количественному составу примесей, содержаниях полигонов отходов

- в фильтрате содержатся органические соединения, неорганические анионы, более 20 ионов (азотных соединений и тяжелых металлов);
- отсутствие системы сбора и очистки фильтрата приводит к накоплению в теле полигона ионов тяжелых металлов и формированию высокотоксичных техногенных грунтов:
- в пробах подземных вод содержится целый ряд неорганических токсичных химических соединений в концентрациях, превышающих (ПДК) по ионам(кадмий, хром, железо, никель и фтор).

Мною предложена очистка фильтратов с полигонов отходов с использованием сорбентов осадителей отходов предприятий г. Сана. основанная на физико-химических процессах, протекающих в электроположительных и электроотрицательных фазах

этих растворов. Табл. 3 содержит данные по количественному составу примесей, содержащихся в фильтратах полигонов отходов Воронежа, Санкт-Петербурга и Москвы до и после очистки [2]. Анализ приведенных данных свидетельствует о высокой эффективности высокоосновных сорбентов-осадителей для очистки фильтратов полигонов отходов с эффективностью очистки более 95 %.

ЛИТЕРАТУРА:

- 1. Глушанкова И.С. Очистка фильтрационных вод полигонов захоронения твердых бытовых отходов на различных этапах жизненного цикла: автореф... дис. д.т.н. М., 2004. 47 с.
- 2. Селиванова С.В. Статика и динамика процессов иммобилизации отходов мегаполиса: дис. канд. техн. наук: 25.00.36. СПБ, СПБГПУ, 2004.